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Abstract

The GMRES method is paxallelised, and com-

bined with local preconditioning to construct an

implicit parallel solver to obtain steady-state solu-
tions for the Navies-Stokes equations of fluid flow

on distributed-memory machines. The new im-

plicit parallel solver is designed to preserve the

convergence rate of the equivalent 'serial' solver.

A static domain-decomposition is used to parti-

tion the computational domain amongst the avail-

able processing nodes of the paxal/d machine. The

SPMD (Single-Program Multiple-Data) program-

ming model is combined with message-passing tools

to develop the parallel code on a 32-node Intel Hy-

percube and a 512-node Intd Delta machine. The

implicit paxallel solver is validated for internal and
external flow problems, and is found to compare

identically with flow solutions obtained on a Cray

Y-MP/8. The computational speed on 32 process-

ing nodes of the i860 machines is comparable to the

speed on a single processor of the Cray Y-MP. A
peak computational speed of 2300 MFlops/sec has
been achieved on 512 nodes of the Intel Delta ma-

chine, for a problem size of 1024K equations (256K

grid points).

Introduction

Paxallel machines based on distributed-memory

architectures axe providing viable alternatives to ex-

pensive vector supercomputers for performing nu-

merical integrations of laxge-scale Computational
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Fluid Dynamics (CFD) problems. As CFD codes
are combined with other codes to perform multidis-

ciplinaxy work, severe pressuxes will be exerted on

modem supercomputers -- both in terms of mem-

ory requirements and CPU time.

The computational power of multiprocessor

machines with a large number of processors can be

harnessed to obtain solutions for the non-lineax pax-

tial differential equations of fluid flow. CFD can
choose between the wide variety of machine archi-

tectuzes currently syllable m shaxed-memory ma-

chines (e.g. Cray Y-MP), distributed-memory ma-

chines (e.g. Intd Hypercube) or machines with by-
bird axchitectttres. This paper concentrates on using

a distributed memory, Multiple Instruction Multiple

Data (MIMD), message-passing axchitectmce to ob-
tain solutions to the Navier-Stokes equations of fluid
flow.

The Navier-Stokes equations axe discretized in

space using an upwind, finite-volume, flux-split for-

mulation. The discretized equations axe lineaxized

with an Euler-implieit linearization, and integrated

in time to obtain a steady-state solution. The Euler-

implicit llnea_ation produces a system of simul-

taneous lineax equations chaxacterized by a large,

spaxse, non-symmetric coefficient matrix. The work

described in this paper concentrates on investigating

parallel implementations of Krylov-subspace meth-

ods, particulaxly GMRES 1, for solving this linear
system of equations at each time-step of the time-

integration.

In earlier work on paxalld Krylov solvers, Sand

Schultz _ combined GMRES with ILU precondi-

tionings on shared-memory machines and loosely-

coupled linear or mesh-connected arrays. O'Leary s

implemented the block Conjugate Gradient algo-

rithm on a coax_e-gruined paxallel machine. An-
derson _ Sa_l 4 _=_mi_ed the standaxd ILU(O) and

polynomial preconditioners for shaxed-memory ma-

chines. Their work concludes that ILU(O) may



outperformpolynomialpreconditioningif thenum-
berof processorsis small. Radicati& Robert s

used overlapped domain decomposition to imple-

ment ILU preconditioning on a shared-memory mul-

tiprocessor. Their numerical experiments showed

that a local ILU factor on overlapping blocks is a

good preconditioning strategy. Baxter et. ale ex-

amined the performance of Krylov solvers with ILU

preconditioning on a shared-memory machine and

on Hypercube architectures. Application problems

from reservoir engineering and mathematics were
studied in their work.

In more recent work on machines with large

number of processors, Berryman et. air have mea-

sured the performance of key interactive kernels

(sparse triangular solves, inner products etc.) of

preconditioned Krylov solvers on the CM-2 ma-
chine. The ideas of multi-level domain decompo-

sition for preconditioned Krylov solvers have been

presented by Gropp and Keyes s. Shadid and

Tuminaro ° have implemented GMRES and other

Krylov solvers on a 1024-node ncube/2 Hypercube.
Their work has examined the efficiency of various lo-

cal and global preconditioners, for several standard,

model problems. Desturler 1° has proposed a mod-
ified, computationally cheaper version of GMRES

for medium to fine grained parallelism on MIMD
machines.

In summary, several authors have explored im-

plementations of K_ylov solvers on shared-memory
and distributed-memory architectures. Most of the
works have examined 'model' problems arising from

elliptic and hyperbolic PDEs. The ILU factoriza-
tion seems to be a popular preconditioner, as sev-

eral efforts have been made to study its performance

in the parallel environment. However, a comprehen-

sive study of the performance of preconditioners and

Krylov solvers for practical CFD problems appears

to be lacking in the literature.

This paper investigates the viability of using

the preconditioned GMRES algorithm in a domain-

decomposition framework to develop an implicit

solver for solving CFD problems on distributed-
memory machines. A new local preconditioner,

which is much cheaper than the popular ILU pre-

conditioner, has been developed to support efficient

implementation of the parallel GMRES solver. The

new preconditioner is based on symmetric Gauss-

Seidel sweeps across each domain, and shows excel-

lent scalability over a large range of processors. The

implicit parallel solver is validated on a 32-node In-

tel Hypercube and a 512-node Intel Delta machine.

This introduction section is followed by a sec-

tion describing some of the theory of parallel ma-

chines (MIMD architectures in particular), CFD
and K.rylov solvers. Detailed results of computa-

tions on an Intel Hypercube and Intel Delta ma-

chines will then be presented. The paper will con-
clude with some remarks about the present results

and some ideas for future work in the area of im-

plicit parallel solvers for CFD codes.

Presentation of Theory

Distributed-Memory Systems

Multiple Instruction Multiple Data (MIMD)

or distributed-memory machines are characterized

by a grouping of processors which are capable of

functioning independently as computational nodes.

Each processor has individual memory, computa-
tional units and communication units. Information

is exchanged amongst processors by sending pack-
ets of information or 'messages' from one proces-

sor to another. Each processor has its own dock,

and there is is no 'global' clock. The processors

can be 'synchronized' by performing a 'global' com-

munication. The connectivity between processors

defines the topology of the machine and determines

the speed at which messages are passed from one

processor to another.

The processors in a Hypercube architecture are
interconnected with a cube-type connectivity ; each

processing node lies on the vertex of an order-n
cube. The 32-node Intel Hypercube machine at

NASA Lewis Research Center is organized as a
cube of order 5. In contrast, the processors for the

512-node Intel Delta machine at CalTech are ar-

ranged in a mesh-type connectivity (16.32 mesh).
Both machines are based on the Intel i860 micro-

processor, with 16 MBytes of memory per node.
The i860 is a 40 MHz RISC microprocessor with a

peak theoretical rating of 32 MIPS (integer perfor-

mance) and 60 Mflops (64-bit floating-point perfor-

mance). The communication networks for the Intel
machines are characterized by relatively low com-
munication bandwidths and high communication la-

tencies. This implies that a few long messages are

preferable to numerous short messages. Further de-
tails of the Hypercube architecture may be found in
reference 11.

Navier-Stokes Equations

The governing equations of compressible fluid

flow in 2-D are the Navier-Stokes equations written



as

aQ OF aG OF, aG,
+ + = --f; + (1)

where Q is the vector of independent conserved vari-

ables, F and G are inviscid flux vectors and F, and

G, are viscous flux vectors. The governing equa-
tions are solved computationally in their integral,

conservation law form in generalized coordinates,

using a cell-centered finite volume formulation. The
inviseid fluxes are upwinded using Van Leer's 12 flux-

splitting scheme. The viscous fluxes are evaluated
with second-order accurate centxal-differences. Ad-

ditional details of the 'serial' code may be found in

reference 13.

The generalized-coordinate form of equation 1
can be written in compact form as

10Q _ -R (2)

where J is the jacobian of the transformation from

cartesian to generalized coordinates. R is called the
residual vector, and equals to zero for a steady-state

solution. The accuracy of the computed solution

is directly affected by the accuracy of the residual

vector computation. A nine-point stencil is used
for second-order accurate calculations of the resid-

ual vector.

The Euler-implicit time-linearization of equa-

tion 2 results in

/"q" - 1 (3)
3A_

where AQ'* is the incremental change in the cell-
centered values of the vector Q between the n + 1th

time level and the known n th time level, i.e. AQ'* =

Q_+l _ Q,,. R,,+I is linearized in time about the
¢zth time level which results in

(4)+ aq,/

where _ is a block-diagonal matrix and _°R is
a large, sparse, block, banded non-symmetric ma-

oR is evaluated with a five-pointtrix. In this paper,
stencil (as compared to a nine-point stencil com-

putationa for the R). This is done to reduce the
computational and storage costs associated with a

nine-point stencil evaluation of _ at the expense of
increased time-steps required to reach a converged

steady-state solution.

Equation 4 can be rewritten in matrix-vector
form as

[V"]{AQ"} = -{R'} (5)

Equation 5 represents the system of simultaneous
linear equations which has to be solved for AQ'* at

each time-step of the time-integration. For small

(of order 100), well-conditioned coefficient matri-

ces, the system may be solved exactly by inverting

the matrix [g'*] at each time-step. However, for

large and/or poorly-conditioned matrices (found in

practical CFD applications), an iterative solution

of equation 5 becomes more viable. The precon-

ditioned GMRES method, investigated in reference

13, is parallelized to solve equation 5. Some issues

related to the development of the parallel solver are
now discussed.

Parallel Domain-Decomposition

The discretized Navier-Stokes equations can be

solved in a parallel framework by decomposing the

original, large uniprocessor domain of grid points
into a number of smaller domains which are then

distributed to the available processors (one domain

per processor). In a distributed-memory system,

each processor can only access information from its
own local-memory. Thus, information may have to

be exchanged across the domain interfaces (or prc_

cessor boundaries) in order to preserve the charac-
teristics of the original problem.

Recall, that the residual vector computation

uses a nine-point stencil. Thus, the itux-evaluation

for cell-faces which lie on (and adjacent to) domain

boundaries will requixe information from (a maxi-

mum of) two adjacent cells which reside in a neigh-
boring processor. This information exchange is fa-

dlitated by creating two layers of 'ghost' cells at
each domain boundary. At each time-step, data

from the neighboring domains is 'communicated' to

these 'ghost' ceils before the flux-evaluation rou-
tines are invoked. This communication is done

prior to the application of the explicit boundary
conditions. The flux-balance evaluated by this ap-

proach has been validated to be identical to the

flux-balance computed for the original uniprocessor
domain. Note that each domain must contain at

least three cell-faces (in each coordinate direction)
for this approach to work successfully.

The implementation of boundary conditions at

physical boundaries may also requixe communica-
tion amongst processors. Airfoil calculations on C

and O-type meshes require communication between

non-neighboring processors in order to effect C and

O-type periodicity. This is achieved by communi-

cation amongst domains which lie along the wake-

cut line of the particular C or O-type grid. Note,



that the boundary condition routines are invoked

only for those processors which contain actual phys-

ical boundaries corresponding to the inflow, outflow,

bottom and top planes of the original uniprocessor
domain. This creates an imbalance in the work-

load across the processors, since the 'interior' pro-

cessors do not perform boundary condition calcula-

tions. This imbalance is not significant since < 1%

of the total computer time is requited for the bound-

ary condition computations.

The inviscid and viscous flux vectors, and the

respective flux-jacobian matricesare first calculated.

The individal flux-jacbian matrices axe then as-

sembled into the implicit, left-hand-side coefficient

matrix, for each domain. The coefficient matrix
is assembled from linear combinations of the flu.x-

jacobian matrices. Each domain assembles its own
individual matrix, and no extra communication is

required for this computational step. A five-point
stencil is used for the implicit operator, providing

a sparse, banded, coefficient matrix with five block-

diagonals.

The ParallelGMRES solver

The original, large, system of linear equations

corresponding to the uuiprocessor domain is thus
transformed to a series of smaller linear systems,

with one linear system for each processor. A pre-
conditioned GMRES solver is used to iteratively

solve each linearsystem. The originalGMRES

method is designed to iteratively solve linear sys-

tems with non-symmetric coefficient matrices. In

order to solve a linear system (say Az = b), the

method seeks an approximate solution zh of the

form zk = Zo + zk, where zo is some arbitrary ini-

tial guess to the exact solution 2. The vector zk lies

in the Krylov subspace, K(A, to, k), defined by the

matrix A, the unit-vector wl = ro/_ (to = b-Az0,

/_ -- Nr011) and the size of the Ktylov subspace k.

The GMRES solver will converge the fastest
when each successive iterate zk _es the resid-

ual norm, Ilrkll over the subspace K(A, ro, k). One

major practical difficulty with GMRES is that when

/c increases, both storage and operation cost increase

as O(k) and O(k_), respectively. If the available

storage is limited, the method may be restarted af-
ter k sub-iterations, with zk replacing z0 in step 1.

The restart version is often used in practical prob-

lems and is referred to as GMRES(/c).

The complete GMRES algorithm can be writ-
ten as follows:

1. For any starting vector z0, form r0 -- b-

i b' = It"olb "1 :
2. Perform k steps of Axnoldi's method 14 with _vl

as the initial vector to form/c vectors which are

successively orthogonal to wl

3. Find the vector (say whichmuam es II,',,11
in the subspace defined by the vectors in step 2.

Compute the solution zk = z0 + zk

The GMRES algorithm involves three basic lin-

ear algebra operations m inner-products of vectors

(steps 1 & 2), sazpy operations (steps 1 & 3) and
matrix-vector products (steps 1 & 2). Evaluation

of the inner-products requites inter-processor com-
muuications since the local inner-products have to

be accumulated across all the processors. This can

be done by passing 2Iog2N messages across the N

processors. The sazp_/operation can be performed

independently by each processor, since only local
data needs to be manipulated.

Each matrix-vector operation requires commu-

nication of the 'boundary' elements of the particular

multiplying vector to neighboring processors. The

components that correspond to the ceils lying on
the the four boundaries of each domain are commu-

nicated to 'ghost' cells of the neighboring domains.
This is critical in order to reproduce the uniproces-

sot matrix-vector product, i.e. the product resulting

from multiplying the original, single-domain coef-
ficient matrix with a given vector. The multiple-

processor matrix-vector product is requixed to be

identical to the uniprocessor matrix-vector product,
at each sub-iteration of the GMRES solver. This is

to ensure that the parallelGMRES solver(without

preconditioning)has the exact convergence rate as

the serialGMRES solver.

Preconditioning the Linear System

The rate of convergence of any iterative al-

gorithm depends on the condition number, _2(A),
of the iteration matrix A and the distribution of

singular-values of A. If _2(A) is large and/or the

spectrum of singular-values of .4 is wide and scat-
tered, the matxix A is poorly conditioned, and the

underlying algorithm may converge slowly. Preeon-
ditioners improve the conditioning of the iteration

matrix, and usually have a first-order effect on im-

proving the convergence rate and overall efficiency

of solvers based on GMRES-like algorithms. For-

really, a preconditioning matrix M transforms the

original system Az = b into

M-IAz = M-lb ¢_ Az = b (6)

The operation of M -1 on any vector (say u =

Az) is equivalent to the solution of a linear system



M_ = u, with M as the coefficient matrix. Such

linear systems have to be solved repeatedly for each

sub-iteration of the preconditioned GMRES algo-

rithm. Any matrix M which produces easy-to-solve

linear systems of the type M_ - u (e.g. M : Diag-

onal of A), is a potentially efficient preconditioner.

The costs associated with preconditioning can

be enumerated as (i) Computation of the precondi-

tioning matrix M, (ii) Linear system solves associ-

ated with M, and, (iii) Additional storage for the
matrix M, which may be of the order of storage re-

quirements for the matrix A. The selection of an

'efficient' preeonditioner is motivated by the mini-
mization of the afore-mentioned costs.

Several different preconditioners that can be

chosen axe diagonal (M = major diagonal of A),

block-diagonal, incomplete L-U factorisation (ILU)
and block-ILU is -- in increasing order of the cost

to calculate and store M. Iterative methods used

in existing CFD codes can also be used as effective

preconditionem. A variant of the iterative scheme
of Yoon and Jameson is is used locally in each do-

main as a parallel preconditioner. This precondi-

tioner, referred to herein as the LUSGS preeondi-

tioner, was validated with the serial GMRES algo-
rithm in reference 13, and found to be much more

efficient (in terms of CPU time and storage) and ex-

tremely competitive (in terms of convergence rate)
with the currently popular preconditioners based on

ILU f_ctorisations of the matrix A.

The LUSGS preconditioner is applied to solve

linear systems like [M]{£} = {u} as follows:

1. Approximately factor[M] where
[D]=majos block-Diagonalof [M], [L]=([D]-
lower-triangular part of [MI) , [UI:---([D ]- upper

triangular part of [M]).

2. Invert the block-diagonal matrix [D]

3. Sweep forwaxd (bottom-left to top-right) to

solve [L]{a} = {u} for {a}.

4. Sweep backward (top-right to bottom-left) to

solve [U]{_} = [D]{a} for {_}.

The LUSGS preconditionerdescribed above is

used without modificationinthe parallelimplemen-

tation. Consequently, the sweeps in steps 3 & 4

(which axe now partialsweeps limitedto the con-

finesof the individualdomains) willnot produce

the same solutionsas the serialalgorithm. How-

ever, this is found to have only marginal effects

on the convergence of the parallel, preconditioned

GMRES solver. The preconditioner performs excel-

lently for rectangular or square domains, and the

performance deteriorates slightly for high aspect-
ratio domains. The LUSGS preconditioned GMRES

solver is found to maintain its convergence charac-

teristics to within 5% of the serial solver (for upto

512 processors). This demonstrates the excellent

scalability of the new solver. Note, that ff the num-
ber of processors equals the number of computa-

tional cells, the LUSGS preconditioner is equivalent

to a fully-scalable block-diagonal pzeconditioner.

I/O and Memory Considerations

This paper uses the Single Program Multiple

Data (SPMD) model of paxallel programming to run
identical copies of the code on all processors. Each

processor performs its input/output operations in-

dependently of the other processors. The fastest

way of performing I/O operations on both iPSC/860

systems is to read/write from/to the Concurrent

File System (CFS). Each processor can access data

from the CFS at a peak rate of 1.5 Mbytes per sec-
ond.

Three data files axe required by each processor

-- an input parameter file, a grid file and a restart

file (if restarting). In the current implementation,

all processors read from a commonly shared parame-

ter file and grid file, both of which reside on the CFS.

Each processor determines its position in the global

domain, and correspondingly extracts the relevant

information from the parameter file and grid file.

Each processor is provided its own unique restart

file (if restarting), which it reads directly from the
CFS.

On completion of the nser-specified time-steps,

each processor outputs a solution filedirectlyto

the CFS. This invokes multiple writes to the CFS

and may cause delays due to contention for the

I/O nodes as all processors try and write to the
CFS at the same time. Since the global solution

is distributed across the various processors, a post-

processing program has been written to assemble

the global solution from the various output files.

The global solution file can also be used to gen-
erate restart information for any number of proces-

sors. The post-processor can be incorporated into
the CFD code itself, but has been avoided in favor

of the increased flexibility afforded by the current

approach.

It must be mentioned that ff the I/O operations

are done to/from the front-end (or 'remote host')

system (a Sun SpaxclO Workstation), the wall-clock
time of each run increases considerably. In addition,

ff intermittent solution files have to be output to the

CFS (e.g. for an unsteady calculation), the I/O time
can tend to dominate the overall wall-clock time.



Thememoryrequirements for the implicit code

axe estimated at 320 words per grid point per pro-

cessor. This includes storage for 10 search dkeetions

of the GMRES solver. 16 MBytes of RAM is avail-

able on each processor of the Intel Hypercube and
Intel Delta machines. In practice, a maximum of

3000 grid points (corresponding to ._ 10 MBytes

of RAM) could be assigned to each processor, when

using 64-bit floating-point arithmetic. The remain-

ing memory is assigned for data, performance mon-

itoring tools, system software and communications
software. Hence, the man,hum problem size is re-

stricted by the total available memory on the pax-
allel machine.

Test Results and Discussion

A parallel, preconditioned GMRES solver has
been implemented for implicit solutions of the two-

dimensional, upwind, finite-volume, Navier-Stokes

equations. The global uniprocessor domain repre-

senting the computational grid is partitioned among

the processors of a distributed-memory machine.

Each processor runs identical copies of the same

computational code on different sets of data. The

processors communicate with each other at several

times during each computational time-step in order

to exchange information.

The parallel code has been developed on an
Intel Hypercube with 32 processors. All code-

development, testing and debugging, and perfor-

mance optimization has been done on the Hyper-

cube. The parallel code has been validated against

the original serial code (which is run on a single

processor of the parallel machine). Results from

the parallel residual vector computation and par-
allel GMRES solver have been validated indepen-

dently over different domain decompositions, and
found to be identical to the serial code. This ensures

complete scalability of the domain decomposition al-

gorithm and the unpreconditioned GMRES solver.
The two problems selected for validation were low-

speed flow over a backward-fae£ug step and subsonic
flow over a NACA 1406 airfoil. Subsequently, the

parallel code was ported to an Intel Delta machine

with 512 processors. All performance results pre-
sented here are based on data obtained from com-

putations on the Intel Delta machine.

Paralld Code Validation

The problem of computing low-speed flow lam-

inar over a backward-facing step was the first test

case to validate the parallel solver for internal flow

conditions. This flow problem illustrates the phe-

nomena of flow sepaxation and recirculation in in-
ternal flows. All flow variables are second-order ac-

curate, fully-upwinded in the streamwise direction,

and third-order accurate, upwind-biased in the nor-

mal direction. The implicit (left-hand-side) opera-
tot is discretized in a first-order accurate manner.

Excellent comparisons with experimental data of

A_rmaly et. all7 have been obtained for this prob-
lem with the serial code is.

The parallel validation was performed on 16
nodes of the Hypercube, with a 4 * 4 decomposition

of the 61 * 51 global grid. This partitioning assigns

16 * 14 grid points to nodes 0-7 and 16 * 13 points

to nodes 8-15. The uniprocessor grid is shown in

Figure 1. A freestream Mach number of Moo = 0.1
was specified. Four different flow conditions with

Reynolds number of Reoo = 100, 200, 300 and 389

were computed. Adiabatic, no slip boundary condi-

tions were used on the top and bottom walls form-

ing the boundaries of the channel, and on the lower

portion (which defines the step) of the inflow bound-

say. For fully developed subsonic flow at the outflow

boundary, three variables (p, u and v) were extrapo-

lated and the pressure was determined by fixing the

stagnation enthalpy. The parabolic velocity profile
at the inflow boundary was simulated by imposing

a profile of Reimann invarixnts.

BACKWARD-FACING STEP

61x51GRID

Figure 1. Computational Grid for Backward-

Facing Step

Figure 2 shows Mach number contours obtained
for the Re = 389 case. The nature and size of

the separation and recizculation behind the step

closely matches the physical description of the flow

as obtained in the experimental data. The ratio

of reattachment distance (XR) to step-height (S)

was found to be identical to the uniprocessor cal-

culations, for all the four Reynolds' numbers. The

calculated Xjz/S ratios also compared very well (to

within _5% accuracy) with the experimental data.

Low Reynolds number, laminar, subsonic flow
over a NACA 1406 airfoil was the second valida-

tion test case for the parallel solver, for external

flow conditions. The flow conditions correspond

to a freestream Mach number of Moo = 0.6, an-
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Figure 2. Mach Number Contours forBackward-

Facing Step

gle of attack, a = 1.0% and Reynolds number,

Re = 5.0 • l0s. The computational grid was a 'C'

mesh of 257 * 65 points,and isshown in figure3.

The far-fieldboundary was placed five-chordsfrom

the airfoiland pointsare clusterednear the airfoil

to resolveviscousgradients.All flow variablesare

third-orderaccurate,upwind-biased in the stream-

wise and normal directions.
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Figure 4. Chordwise Distribution of Cp

acteristics of the serial solver. The differences in the

serial and parallel solvers arise because of the local

(instead of global) implementation of the parallel
LUSGS preconditioner. The LUSGS sweeps were

restricted to the individual processor domains, and

no additional message-passing was done to repro-

duce the uniprocessor LUSGS sweeps of the global

domain. This seemed to have a negligible impact on

the convergence rate of the parallel solver.

Figure 3. Computational Grid for Subsonic Air-
foil

The parallelvalidationfor this case was per-

formed on 32 nodes of the Hypercube with an

8 • 4 partitioningof the 257 * 65 grid to yield

65 * 17 grid points per node. Figure 4 is a plot

of the computed steady-statepressure coefficient,

Cp, on the surfaceof the airfoil.The computed

lift,drag, and pitching moment coefficientsob-

tainedwere CL=0.18148, CI)=0.041703, and C:_=-

0.023718,respectively.These coefficientscompared

exactlywith those computed with the serialversion

ofthe code.

Convergence Rate Comparisons

A comparison ofconvergence rateson the serial

and parallelmachines revealsthe effectivenessand
accuracy of the para-lld implicit solver. A compari-

son for the backward-facing step test case is shown

in figure 5. A constant Courant number of 50 has
been used. It is clear that the parallel precondi-

tioned GMRES solver retains the convergence char-
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Figure 6 tracesthe convergence ratesfor the

subsonic airfoilcalculations,for 1500 time-steps.

The parallelpreconditioned GMRES solver was

tested on 16(8.2), 32(8.4), 64(16.4), 128(16.8) and

256(32.8) nodes. A constant Courant number of 10

was used for the comparisons with the serial solver.

It can be seen in figure 6 that the convergence rate of

the parallel preconditioned GMRES solver decreases

as the number of processors increases. This decrease

implies that the number of time-steps requited by

the parallel solver to attain an eight-order reduction
in the 12 norm of the residual vector, will increase

slightly (5-10%) as compared to the serial solver.
The decrease in convergence rate is negligible up to
a four-order residual reduction, which is usually suf-

ficient for most engineering problems. Thus, it can



be claimed that an implicit paxa]Jel code (includ-

ing the preconditionez, the GMRES solver and the
residual-vector computation) has been designed to

perform consistently over a laxge number of proces-
sors in a distributed-memory environment.
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Figure 6. Convergence histories for Subsonic Air-
foil

Paxallel Performance Results

The paxallel code was run on a single node

of the Hypercube to determine the single-processor

performance. The code was compiled with the max-
imum available vectorization and optimization op-

tions. The 61,51 grid from the backwaxd-facing step
calculation was used, as this was the laxgest number

of points that could be accommodated on a single

node (in accordance with memory requirements of
the CFD code). The preconditiond GMRES solver
was run for 100 time-steps, with 5 sub-iterations

per time-step. The average single-processor CPU

time for the Intel Hypercube was recorded as 340
seconds. The total number of floating-point oper-

ations were determined by invoking the haxdwaxe

performance monitor (hpm) of the Cray Y-ME The

hpm indicated that the code performed 1300 Mtlops,
which translated to a 1300/340=3.8 Mflops/sec rat-

ing for a single processor of the Intel Hypezcube.

The unpreconditioned GMRES solver performed at

a higher rate of 5.9 Mfiops/sec on a single node of

the Intel Hypercube (1290 Mflops, 220 seconds, 100

time-steps, 10 sub-iterations per time-step).

The slower performance of the LUSGS precon-

ditioned GMRES solver can be attributed in paxt

to the inherent lack of vectorization of the LUSGS

pzeconditioner. However, in practice, the faster vec-

tor performance of the unpzeconditioned GMRES

solver was sutficiently compensated for by the much

superior steady-state convergence rate of the pre-

conditioned solver. The use of the LUSGS precon-

ditioner considerably reduced the CPU time to at-
tain a steady-state solution is. This suggests that

the LUSGS preconditioner can be used profitably

in a paxallel environment, provided the convergence
rate does not suffer as the number of processors is

increased.

Recall that the i860 processor is rated at

60 Mfiops/sec fox 64-bit floating-point operations.
Hence, when running at 5.9 Mflops/sec, only 10%

of the peak performance is achieved (by the un-

preconditioned GMRES solver) on a single node.

These performance numbers seem to be very low,

but they compaxe very favorably with other typi-
cal CFD applications is on machines built around

the i860 microprocessor. As a compaxison, the

unpreconditioned and LUSGS-preconditioned GM-

RES solvers performed at rates of 120 Mfiops/sec

and 170 Hflops/sec, respectively, on a single proces-

sor of the Cray Y-MP located at the NASA Lewis
Reseaxch Center.

The CPU times for the subsonic airfoil calcu-

lation axe plotted in figure 7. This figure demon-
strates that a paxallel implementation on 32 nodes
can match the turnaxound time of a serial imple-

mentation on a single processor of a Cray Y-MP. In
addition, a paxallel implementation on 256 nodes is

three times faster than a Cray Y-MP implementa-

tion, in terms of CPU time to convergence. Note,

that for laxger problem sizes, the potential gain in

CPU time with 256 nodes is much larger. This is

because the ratio of computational work to commu-
nication work increases with problem size, and each

processor is utilized mote efficiently.
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Figure 8 shows a profile of the run-time chax-
acteristics for the paxallel code on 32(8 * 4) of the

Intel Hypercube, for the 257.65 grid airfoil prob-

lem. The computational work is in slight imbal-

ance because the nodes which process the boundaxy-



condition information perform more work than the
'interior' nodes. The communication load is in slight

imbalance because the number and length of mes-

sages varies across each node (e.g. boundary nodes
have fewer messages). Howevex, this does not have
an effect on the overall load balance since the com-

munication time is only a small fraction (_5%) of

the total CPU time.

Figure 8.
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In this work, thxee grids of dimensious 193.161,
257.257 and 513.513 were employed to study the

effects of computational load on parallel perfor-

mance. The backwaxd-fa_:ing step problem was cho-

sen as the test case. CPU times for 100 time-steps

(10 sub-iterations per time-step) of the unprecon-
ditioned GMRES solver were recorded. The per-

formance for each grid is summarized in figure 9. A

peak performance corresponding to 2300 Mflops/sec

(512 nodes) is achieved for the 513,513 grid. The
256,256 and 193,161 grids have reduced peak per-

formances of 1350 Mflops/sec and 750 Mflops/sec,

respectively.
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Figure 9. Variation of Performance vs. Load

The 'ideal' performance (figure 9) is based on

the single-node performance of 5.9 Mflops/sec for
a domain size of _ 3000 points. This implies that

for a fixed size of the tmiprocessor grid, the per-
formance will be less than 'ideal' as the number

of processors increases (and the domain size de-

creases). This is evident from the performance
numbers for the 193,161 grid, which deteriorate

rapidly from 5.3 Mflo_/_c/node (16 nodes) to

2.32 Mflops/sec/node (256 nodes). However, when

the grid size increases to 257*257, the performance

numbers range from 5.6 Mflops/sec/node (32 nodes)

to 3.4 Mflops/sec/node (256 nodes). The 513.513

grid performs in the range of 5.2 Mflops/sec/node

(128 nodes) to 4.8 Mflops/sec (256 nodes).
The parallel efficiency for N processors, _/_r, is

calculated as

where T1 is the CPU time for one processor and

TN is the CPU time for N processors. The parallel

efficiency characteristics for different grid sizes are

shown in figure 10. As expected, _?N decreases as

the number of grid points per processor decreases.
It is estimated that _ 1024 grid points per node

are required to keep T/N above 80%. Speedup fac-

tors for the different grids and processors can be

derived from the values of 7/_r by using the rela-

tion SN -- _?N * N. For example, for the 513,513

grid, when N = 512 and _/i¢=0.74, S2v = 379. It
must be remarked that the maximum speed-up for

a fixed-size problem is governed by Amdahl's law 19,

and depends on the distribution of sequential and

parallel work in the code.
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Conclusions and Future Work

A parallel, implicit solver has been developed
for distributed-memory parallel ma_:hines, for o5-

taining steady-state solutions of the compressible

Navier-Stokes equations with a state-of-the-art CFD



code. The implicitsolverisa combination ofa paxal-

lelizedKrylov solver(GMRES) and a scalable,local

parallelpreconditioner.This paper shows that the

parallel,implicitsolverprovides steady-statecon-

vergence rateswhich compare excellentlywith se-

rim implicitsolversused in shared-memory imple-

mentations. The domain-decomposition strategies

adopted in thispaper axe validatedforinternaland

externalflow testcases,on a wide range ofprocess-

ing nodes.

The performance of the paxalld CFD code

variesas a function of the computational workload

and the communication overhead for each proces-

sor. The parallelefficiency(definedas ratioof ac-

tualspeedup to idealspeedup) isfound to decrease

as the amount ofcomputational workload (ornum-

ber of grid points)per processor decreases. The

parallelCFD code peaks at a computational rateof

2300 Mfiops/sec on a 513 * 513 grid on 512 nodes

of the IntelDelta machine. A parallelefficiencyof

80% orgreaterisachieved ifeach processingnode is

assignedat least1024 gridpoints.The parallelim-

plementationisdetermined tobe memory-bound, as

a maximum of3200 gridpointscan be accomodated

inthe 2MW RAM ofeach processor.The communi-

cationoverheads axe determined to be largelyinde-

pendent of the nature ofthe domain decomposition

and the assignment of domains to processors.The

totalcommunication time constitutesroughly 5-7%

of the totalexecution time.

The attainablesingle-nodeperformance on the

Intelmachines (Hypescube or Delta) is 30 times

lower them that on a singleprocessor ofa Cray Y-

MP (6 Mfiops/sec versus 170 Milops/sec). How-

ever, a subsonic a_foil calculationon 256 nodes
is demonstrated to run three times faster than a

single-processor Cray Y-MP computation. Consid-

erable improvements in the areas of compilers, data

cacheing, memory-access times and I/O operations

axe required to further enhance the competitiveness
of parallel machines for large, tlrree-dimensional,

unsteady-flow simulations of finial-flow problems.

Improvements in parallel algorithms, solvers and

programming models will also contribute to the ac-

ceptability of parallel machines in widespread CFD

applications.

The implicit, parallel CFD code developed

in this paper is being integrated into a multi-

disciplinary design environment. Efforts axe cur-

rently underway to paxallellze the turbulence mod-
els and sensitivity-analysis algorithms, to obtain

design-sensitivities for a large number of design

variables in parallel. Recent Kxylov solvers (CGS,

BiCGSTAB and QMR) axe also being studied to

evaluate theircompetitivenessin parallel environ-

ments.
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